Geography Functions
Geography Functions in SQL.
Function | Description | Example | Result |
---|---|---|---|
GEO_TO_H3(lon, lat, res) | Returns the H3 index of the hexagon cell where the given location resides. | GEO_TO_H3(37.79506683, 55.71290588, 15) | 644325524701193974 |
GEOHASH_DECODE('<geohashed-string>') | Converts a Geohash-encoded string into latitude/longitude coordinates. | GEOHASH_DECODE('ezs42') | (-5.60302734375,42.60498046875) |
GEOHASH_ENCODE(lon, lat) | Converts a pair of latitude and longitude coordinates into a Geohash-encoded string. | GEOHASH_ENCODE(-5.60302734375, 42.593994140625) | ezs42d000000 |
POINT_IN_POLYGON((x,y), [(a,b), (c,d), (e,f) ... ]) | Calculates whether a given point falls within the polygon formed by joining multiple points. | POINT_IN_POLYGON((3., 3.), [(6, 0), (8, 4), (5, 8), (0, 2)]) | 1 |
H3_TO_GEO(h3) | Returns the longitude and latitude corresponding to the given H3 index. | H3_TO_GEO(644325524701193974) | (37.79506616830255,55.712902431456676) |
H3_TO_GEO_BOUNDARY(h3) | Returns an array containing the longitude and latitude coordinates of the vertices of the hexagon corresponding to the H3 index. | H3_TO_GEO_BOUNDARY(644325524701193974) | [(37.79505811173477,55.712900225355526),(37.79506506997187,55.71289713485416),(37.795073126539855,55.71289934095484),(37.795074224871684,55.71290463755745),(37.79506726663349,55.71290772805916),(37.79505921006456,55.712905521957914)] |
H3_K_RING(h3, k) | Returns an array containing the H3 indexes of the k-ring hexagons surrounding the input H3 index. Each element in this array is an H3 index. | H3_K_RING(644325524701193974, 1) | [644325524701193897,644325524701193899,644325524701193869,644325524701193970,644325524701193968,644325524701193972] |
H3_IS_VALID(h3) | Checks if the given H3 index is valid. | H3_IS_VALID(644325524701193974) | 1 |
H3_GET_RESOLUTION(h3) | Returns the resolution of the given H3 index. | H3_GET_RESOLUTION(644325524701193974) | 15 |
H3_EDGE_LENGTH_M(res) | Returns the average hexagon edge length in meters at the given resolution. Excludes pentagons. | H3_EDGE_LENGTH_M(1) | 418676.0055 |
H3_EDGE_LENGTH_KM(res) | Returns the average hexagon edge length in kilometers at the given resolution. Excludes pentagons. | H3_EDGE_LENGTH_KM(1) | 418.6760055 |
H3_GET_BASE_CELL(h3) | Returns the base cell number of the given H3 index. | H3_GET_BASE_CELL(644325524701193974) | 8 |
H3_HEX_AREA_M2(res) | Returns the average hexagon area in square meters at the given resolution. Excludes pentagons. | H3_HEX_AREA_M2(1) | 6.097884417941339e11 |
H3_HEX_AREA_KM2(res) | Returns the average hexagon area in square kilometers at the given resolution. Excludes pentagons. | H3_HEX_AREA_KM2(1) | 609788.4417941332 |
H3_INDEXES_ARE_NEIGHBORS(h3, a_h3) | Returns whether or not the provided H3 indexes are neighbors. | H3_INDEXES_ARE_NEIGHBORS(644325524701193974, 644325524701193897) | 1 |
H3_TO_CHILDREN(h3, child_res) | Returns the indexes contained by h3 at resolution child_res . | H3_TO_CHILDREN(635318325446452991, 14) | [639821925073823431,639821925073823439,639821925073823447,639821925073823455,639821925073823463,639821925073823471,639821925073823479] |
H3_TO_PARENT(h3, parent_res) | Returns the parent index containing the h3 at resolution parent_res . | H3_TO_PARENT(635318325446452991, 12) | 630814725819082751 |
H3_TO_STRING(h3) | Converts the representation of the given H3 index to the string representation. | H3_TO_STRING(635318325446452991) | 8d11aa6a38826ff |
STRING_TO_H3(h3) | Converts the string representation to H3 (uint64) representation. | STRING_TO_H3('8d11aa6a38826ff') | 635318325446452991 |
H3_IS_RES_CLASS_III(h3) | Checks if the given H3 index has a resolution with Class III orientation. | H3_IS_RES_CLASS_III(635318325446452991) | 1 |
H3_IS_PENTAGON(h3) | Checks if the given H3 index represents a pentagonal cell. | H3_IS_PENTAGON(599119489002373119) | 1 |
H3_GET_FACES(h3) | Finds all icosahedron faces intersected by the given H3 index. Faces are represented as integers from 0-19. | H3_GET_FACES(599119489002373119) | [0,1,2,3,4] |
H3_CELL_AREA_M2(h3) | Returns the exact area of specific cell in square meters. | H3_CELL_AREA_M2(599119489002373119) | 127785582.60810876 |
H3_CELL_AREA_RADS2(h3) | Returns the exact area of specific cell in square radians. | H3_CELL_AREA_RADS2(599119489002373119) | 3.1482243104279148e-6 |
H3_TO_CENTER_CHILD(h3, res) | Returns the center child index at the specified resolution. | H3_TO_CENTER_CHILD(599119489002373119, 15) | 644155484202336256 |
H3_EXACT_EDGE_LENGTH_M(h3) | Computes the length of this directed edge, in meters. | H3_EXACT_EDGE_LENGTH_M(1319695429381652479) | 8267.32683264678 |
H3_EXACT_EDGE_LENGTH_KM(h3) | Computes the length of this directed edge, in kilometers. | H3_EXACT_EDGE_LENGTH_KM(1319695429381652479) | 8.26732683264678 |
H3_EXACT_EDGE_LENGTH_RADS(h3) | Computes the length of this directed edge, in radians. | H3_EXACT_EDGE_LENGTH_KM(1319695429381652479) | 0.0012976483306137042 |
H3_NUM_HEXAGONS(res) | Returns the number of unique H3 indexes at the given resolution. | H3_NUM_HEXAGONS(10) | 33897029882 |
H3_LINE(h3, a_h3) | Returns the line of indexes between the given two H3 indexes. | H3_LINE(599119489002373119, 599119491149856767) | [599119489002373119,599119491149856767] |
H3_DISTANCE(h3, a_h3) | Returns the grid distance between the the given two H3 indexes. | H3_DISTANCE(599119489002373119, 599119491149856767) | 1 |
H3_HEX_RING(h3, k) | Returns the "hollow" ring of hexagons at exactly grid distance k from the given H3 index. | H3_HEX_RING(599686042433355775, 2) | [599686018811035647,599686034917163007,599686029548453887,599686032769679359,599686198125920255,599686040285872127,599686041359613951,599686039212130303,599686023106002943,599686027400970239,599686013442326527,599686012368584703] |
H3_GET_UNIDIRECTIONAL_EDGE(h3, a_h3) | Returns the edge between the given two H3 indexes. | H3_GET_UNIDIRECTIONAL_EDGE(644325524701193897, 644325524701193754) | 1581074247194257065 |
note
GEO_TO_H3(lon, lat, res)
,H3_TO_PARENT(h3, parent_res)
returning 0 means an error occurred.POINT_IN_POLYGON((x,y), [(a,b), (c,d), (e,f) ... ])
A polygon is a closed shape connected by coordinate pairs in the order they appear. Changing the order of coordinate pairs can result in a different shape.